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Abstract
Recent behavioural and computational studies suggest that access to internal predictive models
of arm and object dynamics is widespread in the sensorimotor system. Several systems,
including those responsible for oculomotor and skeletomotor control, perceptual processing,
postural control and mental imagery, are able to access predictions of the motion of the arm. A
capacity to make and use predictions of object dynamics is similarly widespread. Here, we
review recent studies looking at the predictive capacity of the central nervous system which
reveal pervasive access to forward models of the environment.

(Some figures in this article are in colour only in the electronic version)

Introduction

Predicting the future state of the motor system is thought
to be essential for skilled movement because of the delays
inherent in the sensorimotor system. Forward models are
putative neural systems that mimic physical systems outside
the brain. It has been suggested that the sensorimotor
system employs forward models to predict the consequences
of movements based on efference copies of outgoing motor
commands (von Holst and Mittelstaedt 1950, von Holst 1954,
Jordan and Rumelhart 1992, Miall and Wolpert 1996). By
generating up-to-date estimates of the state of our body and
the environment based on our motor commands they also
allow the system to generate accurate estimates of current
motion. In general, there are other sources of information,
such as desired behaviour or sensory feedback, that can be
used to estimate the consequences of a movement (Karniel
2002). However, estimates based on these do not require a
system which simulates the properties of the motor system and,
therefore, here we reserve forward models for systems which
make predominant use of the motor command to generate
estimates of the outcome (figure 1). Complementary neural
systems that implement the inverse transformation, generating

appropriate motor commands based on desired consequences,
are known as inverse models (figure 1(c)). Here, we review
recent evidence suggesting extensive use of forward models in
the motor system.

Evidence for forward models

Recently, evidence for forward models has considerably
strengthened on the basis of psychophysical and
electrophysiological studies. When holding an object
in a precision grip with the fingertips and thumb on either
side, sufficient grip force must be generated to prevent slip
due to the load force exerted by the object. When the
object’s behaviour is unpredictable our grip force is modified
reactively in response to sensory feedback from the fingertips,
with the consequence that grip tends to lag behind increases
in load. However, when we direct behaviour towards objects
in the environment that exhibit stable properties, predictive
control mechanisms can be effectively exploited that could
predict the consequences of self-induced load and adjust grip
force in anticipation. For example, when the load is increased
by a self-generated action, such as moving the arm, grip force
increases in parallel with load force with no delay. Sensory
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Figure 1. Internal models mimic the physical properties of real
world systems. (a) For example, the motor system P can be
considered to transform outgoing motor command u(t) into sensory
feedback y(t). (b) A forward model of this system P̂ takes a copy of
the motor command (termed efference copy) and generates an
estimate ŷ(t) of the sensory feedback likely to result from u(t)
(corollary discharge). (c) An inverse model performs the opposite
transformation. Desired sensory feedback y∗(t) is transformed into
an estimate of the motor command û(t) necessary to generate this.

detection of the load is too slow to account for this increased
grip force, which therefore relies on predictive processes.
Such a strategy prevents the object slipping while avoiding
excessive grip force which might damage the object or lead to
muscular fatigue. This anticipatory adjustment of grip force
with load during object manipulation is one longstanding
piece evidence for predictive forward models (Johansson
and Cole 1992, Flanagan and Wing 1997, Kawato 1999). In
principle, the coupling could arise without a forward model
if an inverse dynamics model were available (Kawato et al
2003). In this scheme, the desired hand trajectory is passed
to the inverse model which generates an estimate of load
resulting from the planned movement. The load estimate is
used to specify appropriate fingertip grip force. However,
when arm control is inaccurate the actual and desired
trajectories can differ substantially, resulting in inaccurate
load force estimates. It has recently been shown that grip
force accurately predicts load force even when accurate arm
control is still being learned (Flanagan et al 2003). In this
study it took about 7.5 times longer to establish accurate arm
control than to learn appropriate grip forces. This strongly
suggests that the grip force pathways include a predictive
forward model of object and arm dynamics which is learned
more rapidly than the complex inverse dynamics of the arm.

Object manipulation studies with deafferented subjects
also support the idea that forward models maintain grip–load
force coupling during object manipulation. Forward models
must be adaptable and would require a comparison of their
output with actual sensory feedback to provide an appropriate
error signal for updating the parameters in the forward model.
Hence, we would expect a deafferented individual, who lacks

the error signal required to learn a forward model for a
novel object, to have problems generating anticipatory control.
Nowak et al (2004a) had a completely deafferented subject
(GL) making point-to-point reaching movements with a hand-
held object. GL applied much stronger fingertip forces
to the object before, during and after the movements than
normal controls. While her grip-force profile was modulated
according to load force, as in normal subjects, it was not
predictive. This is consistent with an inability to predict the
dynamic load forces encountered when moving a hand-held
object.

While the psychophysical evidence for forward models
is growing, neurophysiological evidence is less widespread.
A recent fMRI imaging study suggests that forward models
of object and arm dynamics are stored in the cerebellum
(Kawato et al 2003). The only regions that were differentially
activated during anticipatory grip force modulation were the
right, anterior and superior cerebellum and the biventer in the
left cerebellum. The authors suggest that these regions contain
forward models for predicting load force variations caused by
arm/object dynamics.

Recently, a neurophysiological study has identified the
neural location of a copy of outgoing motor commands, termed
efference copy, a key component of a forward model system.
Sommer and Wurtz (2002) have suggested that medio-dorsal
(MD) thalamic neurons carry a corollary discharge signal
from the superior colliculus to the frontal eye fields. This is
used to update a forward model of eye position during
saccades. The MD neurons fire before saccade onset,
demonstrating that their activity is linked to the motor
command and not the sensory feedback. When these neurons
are inactivated the precision of a saccade to a single target is
unaffected. However, in accordance with a failure of updating
the current location of the eye based on a forward model
prediction, the accuracy of subsequent second saccade in a
double-step task shows errors consistent with an inaccurate
representation of eye state. Evidence for efference copy is
also provided by Roy and Cullen (2001), whose work with
rhesus monkeys suggests an efference copy of the neck motor
commands is used in cancelling the self-generated component
of head angular velocity feedback. Vestibular nuclei neurons
that were shown to encode head angular velocity during passive
head rotations, and active whole body rotations, failed to do so
during active head turns. This is consistent with cancellation
of the vestibular feedback by an efference copy of the outgoing
motor command when the monkeys actively turn their heads.

Arm dynamics models

It has been known for some time that internal models of
arm dynamics play an important role in controlling reaching
movements (Atkeson 1989, Shadmehr and Mussa-Ivaldi 1994,
Conditt et al 1997). Forward models of arm dynamics have
also been thought to play an important role in arm control
by minimizing the effect of sensorimotor delays (Jordan
and Rumelhart 1992, Wolpert et al 1995). Anticipatory
postural adjustments have long been known to depend on prior
knowledge of arm dynamics (Marsden et al 1978, Bouisset
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and Zattara 1981). More recently, studies of saccadic eye
movements, fingertip grip forces, motor imagery and other
motor systems have suggested that these disparate systems
also have access to forward models of arm dynamics.

The fingertip grip force control system has been shown to
have access to important aspects of arm dynamics. The two-
link configuration of the human arm means that the effective
inertia of the hand varies with movement direction (termed
inertial anisotropy), and causes corresponding variations in
hand acceleration with movement direction. Flanagan and
Lolley (2001) have shown that when sliding an object across
a frictionless surface to targets located in different directions,
subjects vary the force they apply normal to the surface in
anticipation of direction dependant changes in initial hand
acceleration. Similar information seems to be available in
brain regions responsible for motor imagery. The anisotropic
inertia of the arm noted in the previous study also causes
movements to equidistant targets to be slower in high inertia
directions. Noting this property, Gentili et al (2004) have
shown that the durations of real and imagined movements are
tightly correlated regardless of whether subjects are asked to
reach or imagine reaches in low or high inertia directions.
Furthermore, when the arm dynamics are altered by attaching
a 4 kg mass to the wrist, imagined movement duration reduces
by the same as actual movement duration. Hence, systems
responsible for motor imagery seem to have access to a
predictive model of the inertial dynamics of the arm. There
is also evidence that the saccadic eye movement system has
access to a forward model of arm dynamics. Ariff et al (2002)
hid subjects’ arms from view and had them make reaching
movements without visual feedback. They were asked to
track the position of their unseen hand with their eyes. Subjects
made saccadic movements to a location predicting the position
of their hand 196 ms in the future. A brief force pulse
was then applied to the hand, thereby altering the state of
their arm. After the pulse, saccades were suppressed for
100 ms and then accurate predictive saccades re-emerged.
However, when the dynamics of the arm were altered after
the perturbation by applying a novel viscous force field, the
subsequent saccades were inaccurate. In a further study,
the arm’s dynamics were altered by applying various external
force fields (Nanayakkara and Shadmehr 2003). The eyes were
able to make accurate predictive saccades after the force pulse
when the externally imposed arm dynamics were predictable.
Hence, the saccadic system is able to use new information on
arm dynamics to improve its performance. All these results
suggest that adaptable internal models of arm dynamics are
available to a variety of motor systems. Further studies are
required to reveal whether this reflects broad access to a
common representation of arm dynamics or multiple, possibly
redundant, representations within each motor subsystem.

In addition to the use of prediction for control, prediction
is a key element in perceptual processing. Sensory prediction
can be derived from state prediction and used to cancel the
sensory effects of movement, which is known as reafference.
By using such prediction, it is possible to cancel out the effects
of sensory changes induced by self-motion, thereby enhancing
more relevant sensory information. For example, predictive

mechanisms underlie the observation that the same tactile
stimuli, such as a tickle (Weiskrantz et al 1971, Blakemore
et al 1999) or constant force (Shergill et al 2003), are felt
less intensely when self-applied. A predictive mechanism
has been supported by studies in which a time delay is
introduced between the motor command and the resulting
tickle (Blakemore et al 1999). The greater the time delay
the more ticklish the percept, presumably due to a reduction in
the ability to cancel the sensory feedback based on the motor
command.

Object dynamics models

There is also evidence that the sensorimotor system
maintains forward models of systems other than the arm,
including visuomotor relationships (Mehta and Schaal 2002),
oculomotor plant and sensor dynamics (Zupan et al 2002,
Glasauer 2003) and external object dynamics. When lifting an
object vertically from a surface we rapidly learn appropriate
fingertip grip forces to overcome gravitoinertial-load forces
(Johansson and Westling 1988). A memory of appropriate
force scaling is maintained and can be recalled later based on
visual cues (Gordon et al 1991, 1993). Given that the memory
is flexible enough to generalize between hands (Gordon
et al 1994) and to be useful in manipulating combinations
of objects (Davidson and Wolpert 2004), it might be expected
that explicit knowledge of a simple change in object dynamics
could be used to update the internal model. To address
this, Nowak and Hermsdorfer (2003) asked subjects to lift
a cup full of water with a precision grip (i.e., using their
thumb and forefinger). Subjects were then asked to drink
half the water in the cup with a straw, before lifting the cup
again. The maximum grip force rate used to lift an object
provides a reliable estimate of the anticipated weight. It was
surprising then that, despite possessing explicit knowledge the
cup was lighter after drinking, maximum grip force rate did not
reduce for the lighter cup despite subjects’ explicit conscious
expectations (figure 2). This agrees with previous findings
suggesting an inability to use explicit knowledge of mass
distribution to form an appropriate forward model (Salimi
et al 2000). In contrast, explicit knowledge of a relationship
between two previously experienced objects can be used to
form a new forward model. When two previously experienced
objects are stacked, subjects scale their grip force appropriately
on the first lift of the combined object (Davidson and Wolpert
2004). Since subjects already possess internal models for the
two constituent objects, the result might be explained by an
ability to add their outputs (Haruno et al 2001).

Interestingly, it has recently emerged that anticipatory grip
force scaling learned after lifting an object can be disrupted by
pinching an unrelated object with more force than appropriate
to the original object. After repeatedly lifting a 4 N object,
subjects applied 8 N force to an unrelated object, without
lifting, by squeezing it between thumb and forefinger. On the
first lift of the 4 N object after pinching, anticipatory grip forces
were inappropriately high (Quaney et al 2003). The effect
has been termed the ‘sensorimotor memory’ to differentiate it
from object-specific memory of appropriate anticipatory force
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Figure 2. Explicit knowledge of altered object properties is insufficient to alter an existing forward model (redrawn from Nowak et al
(2003)). When repeatedly lifting an object, subjects learn to precisely scale their applied forces to overcome expected gravitoinertial-load
forces. (a) Nowak et al (2003) had subjects repeatedly lift an object filled with water. (b) After several lifts, the peak grip force rate
(green/light grey) occurred just prior to object lift-off (vertical dashed line) and was scaled appropriately for the object’s weight.
(c) Subjects drank half the water from the object using a straw. (d) Subjects then lifted the object, aware that they had made the object
lighter by drinking the water. (e) Nevertheless, the same grip force (green/light grey) was applied on this lift as used prior to drinking and
the object was accelerated (red/dark grey) as if a heavier object, still full of water, was expected.

scaling discussed earlier. Sensorimotor memory appears to
dominate object-specific memory under some circumstances.
The same effect is observed when the pinch is performed with
the opposite hand. Further insight has recently been gained in a
study showing that a similar effect can be induced with sensory
input alone (Nowak et al 2004c). If the muscles contributing
to grip force scaling, first interosseus and adductor pollicis, are
mechanically vibrated after lifting an object then grip forces
will be inappropriately high on the next lift. Again, this effect
transfers between hands. These two studies suggest that grip
force scaling is influenced by both a forward model output for
predictive grip force scaling and a simpler sensory memory of
the previous lift.

Prediction of object dynamics is not limited to grip force
control. Lamberg et al (2003) looked at breathing coordination
during lifts with identical looking 150 g and 1000 g objects.
They randomly changed the object lifted after every block of
five lifts. When the weight of the object was unpredictable (on
the first lift of a block) grip force scaling was as for the previous
lift and respiratory output prior to the lift was appropriate for
the 1000 g object. This suggests an anticipatory strategy where
respiratory output is matched to the heavier object regardless
of the previous weight, perhaps caused by increased arousal
due to anxiety over unpredictability (Poon 1996). When the
weight of the object was predictable (on the fifth lift of a block),
force application was faster and inspiratory duration and tidal
volume were reduced prior to the lift 1000 g lift compared to
the 150 g lift. This anticipatory alteration in respiratory output
for predictable lifts shows the respiratory system has access to
a predictive model capturing the weight of the object.

There is also evidence that forward models of complex
external tools are used in arm control. Mehta and Schaal
(2002) had subjects learn to balance real and virtual poles
on their fingertips. Examining a variety of control schemes
they concluded, through a process of elimination, that a
forward predictive model was likely to be employed in the
task. Mah and Mussa-Ivaldi (2003) showed that when subjects
learn to control the tip of a simulated inverted pendulum
their internal representation depends on the specific hand
trajectories selected. Hence, a less general internal model
is formed which only represents the properties of the object
experienced while doing the task. In a different study, the
same investigators showed that simulated inverted pendulum
dynamics are represented as a relationship between torques
or muscle commands and object motion (Mah and Mussa-
Ivaldi 2003). Learning while the arm was in one posture did
not transfer well to a different posture. A recent imaging
study has shown that internal models of simpler tools, in this
case of mice with differing properties, are stored in structural
modules in the lateral regions of the cerebellum (Imamizu
et al 2003). Subjects learned to perform a tracking task with
a normal computer mouse, a rotated mouse (where the cursor
movement was rotated 120◦ relative to mouse movement) and
a velocity mouse (where the cursor velocity depended on the
mouse position). Anatomical regions of activation for each
tool varied substantially between subjects, indicating that tools
are stored idiosyncratically.

Internal models of object dynamics are capable of
adapting to unusual and novel force profiles, including the
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Figure 3. Expected dynamics override observed kinematics in an object interception task (redrawn from Zago et al (2004a)). (a) Subjects
normally time their interception of a falling ball assuming it moves with constant acceleration due to gravity (1 g). (b) When a real ball,
falling behind a projection screen, arrives in synchrony with a virtual ball displayed on the screen, subjects continue to expect the ball to fall
under the influence of gravity. (c) Consequently, subjects intercept the real ball correctly when the virtual ball accelerates as it would under
gravity, but respond too early when the virtual ball moves with constant velocity (0 g). (d) In contrast, when the ball is intercepted virtually
by clicking a mouse button, subjects expect the virtual ball to move with constant velocity. When the virtual ball actually accelerates under
simulated gravity (1g) their response is late. The location of the target ball at the expected moment of impact is shown in red /dark grey.
Earlier locations of the ball, as seen by the subject, are shown in light red/light grey.

sudden effects of micro and hyper gravity (Augurelle et al
2003), and coriolis and centripetal forces (Nowak et al 2004b).
There are limits to this adaptability, however. McIntyre
et al (2001) have shown that predictive models are tuned
for the effects of gravity. When catching a vertically falling
ball, people normally generate accurately timed anticipatory
responses to intercept the ball. In the 0 g environment
of space, however, these anticipatory responses occur too
early, indicating that the CNS employs an internal model
of acceleration due to gravity which is inappropriate in a
0 g environment. As subjects spend more time in a 0 g
environment the anticipatory response slowly improves, but
never reaches the performance achieved in 1 g suggesting a
heavy bias to terrestrial gravity. Recent studies have looked
at simulated 0 g environments in which objects move with
constant velocity (Zago et al 2004a). A real ball was released
behind the projection screen which displayed an image of a
ball falling. Subjects were asked to intercept the real ball,
which arrived at the bottom of the screen in synchrony with
the simulated ball. Subjects timed their interception assuming
gravity was accelerating the simulated ball (1 g condition),
even when it actually moved with constant velocity (0 g
condition). Subjects altered their response to the unusual ball
motion after repeated trials, yet catch trials indicated the 1 g

gravity model persisted and that adaptation was achieved by
altering the timing of responses. This suggests predictions
of object dynamics override observed kinematics in this task.
When the target was intercepted virtually by clicking a mouse
button, however, subjects timed their responses appropriately
for a constant velocity (0 g) target, even when the target
actually accelerated. Hence, the change from a real to a
virtual interception task alerted subjects’ model of the object’s
mechanical properties (figure 3). The same experimenters
have also shown that adaptation to the 0 g condition is acquired
rapidly and is remarkably resistant to interference, even when
only presented occasionally in a block of 1 g trials (Zago et al
2004b).

Conclusions

The studies reviewed here show that otherwise dissimilar
systems within the CNS, including those responsible for
oculomotor control and mental imagery, have access to
forward models of arm dynamics. Similarly, predictive
models of external object dynamics are widely available
across sensorimotor systems. Evidence from imaging studies
suggests at least some of these models are stored in certain
regions of the cerebellum. It is tempting, then, to suggest
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that the sensorimotor system enjoys widespread access to
common encodings of arm and object dynamics located in
the cerebellum. Ultimately, we await electrophysiological
evidence to confirm this intriguing possibility.
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